
cal
the
ble

A major purpose of the Techni-
klformation Center is to provide
broadest dissemination possi-
of information contained in

DOE’s Research and Development
Reports !O business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

‘ L&UR -89-2242

LOS Alames Na!,onal LabwaIorv IS oowmod IVV m. Un,volwlv 01 CaIIIorya b IM Unmd SIaIos Dwcmlmenl of Ena;gy wdw Conlfac! W-7405 .ENG. 36

LA-uR--89-2242

DE89 015240

TITLE SNM ACCOUNTING SYSTEMS - DBASE VERSUS C

AUTHOR(S) R. C, Bearse and R. H. Tisiinger

SUBMITTEDTO 30TH Annual Meeting of the Institute of Nuclear
Materials Management, Orlando, July 9-12, 1989

I)I!K”I.AIMER

bsmarinos
,,’\

‘i

;11ml!
Los Alamos National Laboratory
Los Alamos,New Mexico 87545 ,.
-.. . ., ..4,,,... .- . .1.s!1IeIIAIIlmale

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

S?@! ACCOUNTINGSYSTEMS - dBASE VERSUS C*

R. C. Bearse,** ?. !4. Tisinger, and J. S. Ballmann
Safegurds System Group

Los Alamos National Laboratory
LOS Alamos, ?Ol 87545

ABSTUACT

The Fuel flanufacturing Facility (FMF) at Ar-
gonne Natinnal Laboratories-West (ANL-W) in Idaho
Falls accomplishes its internal special nuclear
material accounting with a PC-based DYnamic Mate-
rial Accounting (PC/DYMAC) system developed as a
collaboration between FMF and LCIS Alamos National
Laboratory staff members. This system comprises
four computers coemnmicating via floppy disks
contaifting transfer informat on.

I
The accounting

software was written in dBASE and compiled under
Clipper.ti The decision was made to network the
computers and to speed the accounting process.
Moreover, it was decided to extend the collabora-
tion to Sandia National Labor~tory staff and to
incorporate their recently developed CAJIWS and
WATCH systems to automate data input and to pro-
vide a meaaure of material contt’ol. The curr?nt
version of the c?de is being translated into the
C langwge. The implications of such a change
will be discussed.

INTRODUCTION

The Fuel Manufacturing Facility (RIF) at Ar-
gonne National Laboratories-West (ANL-W) in Idaho
Fa!le ●ccomplishes its internal speciaL nuclear
material (SNFl) ●ccounting with a PC-based bYnamic
Material Accounting (PC/DYMAC) syrntem developed
es ● collaboration batween FTIF and Los Alamos
National Laboratory staff members. L This system
comprises four computeru cwranunictting via floppy
disks containing trans er information.

i
The com-

puters are IBM/PC-ATa, each with 2 MB of memory

—..
*This ‘work’ i; “;upported by the U.S. Department of
Energy, Office of Safeguards ●nd Security,

**Co~labr)rator from the I.Jnlveraity of Kannan.

tTrade~rk ,>f Ashton-Tate, Tor~al\[e, (;A ~J0502,”

ttTrad-nark uf Nantucket, [III:., Culver City, CA

902)(),

$Regittered tr~de,nark of the lnterl~atl,,!]al HIInl-
nasa $tachines Corporation.

and a kO-flB hard disk. The PC/DOS* operating

system runs the accounting software, which is a
Clipper-compiled version of the dBASE code.

The original system design was dictated by
circumstances. The facility was then spread over
several buildings that could not be linked by
wire. Transaction were posted by carrying the
information from one computer to another via
floppy disks. Subsequently ANL-W moved the W
and all its operation into a single building and
haa at leaat doubled ita throughput. Because all
operations are now in a single building, the need
for trar:sferring data via floppy diska is obvi-
ated. The increase in throughput has ●xceeded
the ability of the dBase code to perform quickly
enough to keep up. Careful time scheduling is
necessary to synchronize production and account-
ing, Thus, a new system waa called for.

The decision was made to network the compu-
ters and to speed the accounting programs. More-
over, it was decided to extend the collaboration
to Sandia National Laboratory staff and to incor-
porate their recently developed CAMUS and WATCH
systemaz for automatic data input and a r~asure

of material control. (CAMUS ●llowJ barcode data
entry of inforrution for transactions. and the
WATCH system senda ●n RF alarm if an
item ia d~aturbed without permission.)

SOFTWAREAND SARDWARff

We believed th t the XENIX** opera
1(a variant of UNIX) would facilitate

rornputer communication ●nd ●now the s
operation o f several processes. We
sought n XENIX-based version of dBASE

unat nded

ing system
the inter-
rnultaneous
originally

some research, determined that SC” ‘NAN
would fit our needs, Uae of this system mit\imized

*Trademsrk of Microsoft Corporatlor.

**”;rndpMrk of Santa Cruz Operations, [!11’ . (s(:()),

SIII\tA ~.IIIz, (;A 9S061-99b9.

tltegistere(i trademark of Bell [~borat(}ri~si

ttlhe XeIIIX Vt?rn{or) 1S available thr~)u~h S(~t),

.
changes to the original PC/DYMAC code and provided

a small speed improvement over :he original. More-
over, in principle, the accounting system could
be run as one process among muny. The original

system included a consnunications package, a transa-
ction poster, a transaction builder, and a CAP!US
interface, which ran as concurrent, separate proc-
esses.

An IBfl PS/2 Model 80 running an 80386 proces-
sor at 20 MHz was procured to replace the central
computer. The FoxBASE+ system worked etfectlvely

cn that computer and improved the speed two- to
three-fold over the Clipper-based system currently
in use. Running on tha IBM ATs, however, speed
was not ●nhanced overall, and the process swapping
necessary in the new design caused disconcerting
data entry delays that threatened the usefulness
of the final product. Most importantly, it was
clear that there would be no reserve capacity to
accommodate increased manufacturing productivity.

He decided to rewrite the code in the C lan-
guage* using the FairCorn** software package c-tree
as the file handl~r. Time constraints did not

allow a detailed study of available file handlers.
one of us

/
●d contact with University of Xansas

prograumters who had had success with c-tree for
their application. Their experience clearly indi-
cated that the FalrCom product was efficient, re-
liable, and suited Co our task.

FXPERIEN(X MINED

Fllo Eamdler

The c-tree product and its companion report
generator r-tree have worked flawlessly. c-tree
can work in each of three modes: as a stand-alone
file handler, as a multi-user file handler, and
ss a file server. We chose the first approach
because the manual suggested that the neceqsary
overhead for multi-user and file-server modes
would slgnlflcantiy slow the design of the system.
Our design Is such that access to the inventory
file 1s through the same singly-threaded modules,
so the simpler access procedure is acceptable.

The c-tree and r-tree codes are wartauted to
be portable. They are dellvered as C-language
nource code. Installation instructions a
eluded for UNIX, XENIX, PC/MS-lX)S and IJFls. # ‘“-For
the XEN[X system, a distinction is msde for irt-
atallatlon on Mb and IIlb verslunm.

We have found the c-tree packaRo to be abao-
lut~ly bug-fr?e; It Ifi more lhnn tn~t enuilgh for

*Ue IIsad the SC() C-14nUUJlRe rmnpil~r.

●*FalrC!>m, {tolumbin. M(I

‘Data uupplia,i by l)~vid
Karmas.

‘Tradamrk of l)lRltal
Flaynaldl ?lA OII$L-’IVOI,

0520),”

Mallllf?f”lllg, Ulllvr!l’qtly !)1

Eqlllplrwnt {:orpormll~]ll,”

dur purpose; it has capacity (such as multi-user
and variable length record capabilities) that we
have not beg,m to explore.

The report writer is easy to use once it is
understood. A compiled driver is part of the main
code and calls report scripts that are maintained
as ASCII text files. The driver interprets these
files and generates the report. Thus , it is pos-
sible to change reporta or design new ones without
having to recompile. The only drawback so far is
the luck of a way to program the script file CO
ask the user to ●nter data. Presently, we are
forced to mdify the report driver to accomplish
this. This mey s~mply be cauaed by an incomplete
understanding of the k-tree package.

A d-tree package completes the set. It
pears to be a development package that allows
user to “easily” produce database-type appl,
tions. The effort required to understand
other packagea haa not encouraged ua to exp
d-t.”ee further at this the.

C<ODE VERSUS dMSE

The C language haa much to reconsnend it,

ap-
the
ca-
the
ore

[t
is a far older language than ninny care to recog-

nize (its direct predeceaatrs are older Lhan
FORTRAN) . Tha adoption of 2 dues not require
FORTRAN progr~ra to relearn complataly solu-
tions to prngr~ing problems aa would LISP or
even INGRES.* C ia baaically a !lnear, block-
atructured, function-baaed languagti like FORTRAN
?? and Pascal.

When the recoding waa begun, we had little
experience with XENIX and essentially none with
c. Even with that limited background, translation
of the basi. system took leaa than 300 person-
houra. The pro~ram at that point consisted of
about 130 routines, each varying in size from 10
lines of code to several hundrmd; not counting
declarations in “lncluda” files, tt,er~ were Nrc
than bOOO linaa.

The second ph~se of the coding consisted of
[Inlshlllg ●ll the rtecesaary tral)sactlon module~,
varioua utllltles, and gmerators for tha 23 re-
ports used ● t FMF on ● regular basis. Because we
had learned much by then concerning the C language
and XENIX, we saw that a sl,tniflcant restructuring
of the ●ntire system wottld he nec@sMary. [n par-
ticular, we improved the ocreen handlers and datn
entry subroutlnea, and incorporated a mouse lntcr-
Iare Into tha system. Finally, we developed,
tested, and added the consnunlcatlon parkilgos (()
the system. TIw code II(IW vousists ot more Lllilll

;!()() qilbruullnea ●nd 12 rapor~ ncrlp~# And IY now
rotlghly 10 000 llnes lunR. our totnl illvt~%tmc~llt
is ucarly 1000 parson-hours,

[h~r ~xpariencm 10 dale haa II I,unl II~.d ~I*voI~Il

,llll~lv,l(.e- between d13ASk: !411d (: lilllgll,!~e I. II IIPQ,

t~,.l,l,,~,k o f Ralatit)nnl rp(’hillill)~y, 1111.,
Rerk-l,,y, (:A 9L)05.

that are worth discussing here. Moreover, our

choice of C was based on widely held as~umptions
about the C langrxtge, some of which now seem jus-

tified, others of which need rwre study.

Speed

At the stare of debugging, we compared the
speeds ~f the system now operating at AN~-U and

the recoded ofie. A set of LOO transactions, each
requiring a rewrite of the inventory File, takes
about 500 seca’ids on the old system, but only 20
seconds on the new system. This 25-fold speed
enhancement is ever more impressive when it is
remembered that the old code is compiled under

Clipper, which ia invariably faster than inter-
preted dBASE code.

Portability

One of the highly touted advantages of C is
its portability. It is supposed to be ●asy to
move code from one computer to another. Compilers
a:-e available on a wide variety of -chines, and
the highly portable UNIX operating system is
largely coded in C. We are not yet able to tes-
tify to the portability, although we hope to pert

it to WE aoono

We did find, however, what the ●xperta al-
ready kneh --that portability 1s not automatic.3
We were shocked to discover that the first version

of our code, which ran well on an 80286 processor,
would not run on an 80386. We finally determined
that the problem was, as usual, ours. Integers
on the two machiuca had different byta lengths,
and we were not carefully controlling our d@clara-
tiona to ensure compatabllity. By reviatng the
code and carefully adopting Jtandards that we
believe are now machine independent, we seem to
have solvad this problem. We are not, however,
ready to move the code to a completely different

architecture such aa V?IS.

Record ●nd Field Slcea

ln dBASE, ,numberri are stored ●s ASCII
strings. Thus. a 10-dlglt Lntegar 1s stored in
10 bytes as is a 9-digtt floating point numbe:.
[n C, integers can be stored as 2 or b bytes ●nd
floating numbers .18 4 or B bytee. Four-byte real
numbers wil~ accl~lately hold values of seven sig-
nificant flgurea. We have chosan to use h bytes
tor stor!ng floating point aseay reaulta, but use
H bytes when performing calculatluna,

(-ornprese the ●lze of ●n lnver,-
Y)b hylcs LII the dBASfi verslun
III Lhe (~ v~rnlon. Thin nut only
furdx H,]me speed improvement.

equivalent of indexed variables by creating vari-

able names from the index itself, but this tech-
nique is not natural and is difficult to follow.
Compilers, such as Clipper, obviate this problem
by providing subscripting aa an extension to the
dBASE language.

Structures

The C languge allows structures. Users of
Pascal will recognize immediately the concept and
the synca%. A structure 18 derined by declaring
the ●lements (fields) that compose it. An element
within a structure can then be referred :0 as
“struct.elemant,” or in pointer notation, as
“struct->element.” Structures may be nested. We
have taken advantage of this by defining a struc-

ture “amt *“ which represents each chertical and
isotopic assay of an item. We use this structure
in two larger structures: the inventory and :he
transaction. An inventory rec~rd in our system
cansists of demographic information (such as where
the object is and how it relates to others) and
quantitative information including its chemical
analyais. The analysis is {.n the substructure
“inventory.a.mt.” To reference the uranium amount,
one need only write “invent. amt.uran.” Similarly,
the transaction le made up of three parta--an xn

part representing the change, and two inventory
amounts: the source and destination inventory
records. The fact that the amt substructures in
each of theme substructures are the same provides
some powerful advantages ae will be shown below.
Structure and substructure addresses and values
can be passed at will between ●ubroutlnes and
other program parts providin8 a significant econ-
omy of code and hence improving program lucidity.

Subprogrm

Although dBASE only toleratea aubprogranm, C
encourages them. With structures and pointers,

it Is possible to write very powerful modul.e~ to
mnipulata data entitles and to call them suc-

cinctly from the calling program. This succlnct-
neaa mkes the code easier to understand. Care
in tha design of these functions and coploua in-

ternal error checking can be ● powerful aid t]
rapid, accurate development of code.

Cloee Relationship with the Operating Sy~tem

The C language waa uned LII developing thr

XENIX operating system: thus, its u8e permits
interactions with the operating sya~.em that would

nut be natural or faat with uther langu~l~~s.
dBASli ia particularly awkward in Its lnler.lvtil)!l~
wllh the operating ayatem,

Becauae much of the XENIX operatin~ ~yqt,!m

is itself written III C, It prpsents n wpll-doflilod
~Ind predlrtnble Intertmre t,] (! t-ode. up Il,lvm

tOIII\Cf th~t [)~@llillg ,Ilid l’lUS1llfl !)t ti~~s i!4 ,11
Ienut LeII Lim?s l~mt.er thnn with dBASK. u?, Il,lvt!

Iw)t h[)thrr~d Lu lmplwtwllL lIuirxI .11 t Iles [IIIIL tniilil

lmiIl fillt)wctd values t,)r t Ieldsl *III-II AM pIIMIIII”(

!l-q~’rlpli(l!lm nlld lol:nlioll N” , I)r{:.lllsr! lIIc: II* iq II(I
poll.!!ptit)lc! dl?llly 111 *ysLt,m ,Ipvr; Il i(]ll Wlltl,llll

I hem,

Generic Flodules /’ STRUCTURE FOR AMOUNT TYPE RECORDS ‘/
/“ INCLUDE FILE RGSTRC.H “/

The Holy Grail of Wfl-accounting-system
writers has been the generic accounting system.

We have been involved with the development of at
least three systems hoped to be generic, and each
fell far short of the goal. C may provide, how-

ever, a way co develop a significant number of
modules that would be generic and portable. A
system specific to a particular plant could be
built more cheaply using some of these modules
rather than starting rro,n scratch. We will dis-

cuss one such module in detail. The example we
have chosen also points out some of the other
features of C that have been indicated above.

Figures 1-3 show fragments of C code. The
first file is part of an “include” file that con-
tains the declaration of an “amountform” (“amt”)
structure, which contains the assay amount. Fig-
ure 2 shows the first code that was written to
add one amount record to another. The very basis
of an accounting system is crediting and debiting.
Adding one “amt” record to another is clearly
generic. This is the routine that credits an

inventory record with a transferred amount. It
is quite clear to the average progransner, be he
or she FORTRAN or Pascal adept. Although the
crediting process is generic, the fields chosen
here are not, and thus it would be necessary to
rewrite the code shown in Fig. 2 each time dif-
ferent elements are chosen.

Contrast this wit”l Fig. 3. Here the amount
substructure consists of a contiguous sequential
series of G-byte segments, each segment represent-
ing a floating point number. To change the mean-
ing of these fields, it is only necessary to
change the declarations in the “include” file.
The “sizeof” operator automatically determines the
size of the amount substructure and allows the
code to cut off the scan of the 4-byte segments
at the appropriate place. This code can be made
independent of the choice of L- or 8-byte numbers
so long as all tlie elements of “mutt’are of the
same type, contiguous, and sequential.

Virtues of dBASE

dBASE has some obvious advantages over C.
[t can be used interactively--a powerful advantage

when debugging ot attempting to develop a strategy
to accomplish a computing task. Files can be

manipulated ad hoc, aiding {n revising field mean-
ings and correcting errors. dBASE is certainly
more user friendly and easier to learn,

CONCLUS1ONS

The C language has some scriuus drawbacks.
Its compilers are very tolerant, wking it poE-
uibte t> ia~aily write code that manipui~tes uther
~-ode far ~iway in space and time [r[}m itself , We
often found bugs arising from the :Iddition 0[A
new piece of code that were not liue tu the new
(!od. but to a third piece of code that wan writing

into an unintended location, The new code simp[y
pruvlded a piacc !or the uld code to make itq
Ml{gn@llt effert ttUIllife9t.

typedef float FLOAT;
typedef char CHAR;
typedef unsigned short USHORT;
typedef long LGNG;

struct ankwntforrn{
FLOAT netamt;
FLOAT alloy;
FLOAT uran;
FLOAT U 234;
FLOAT U 235;
FLOAT U 236;
FLOAT U 238;
FLOAT PU;

FLOAT pU i SO;
FLOAT pU 239;
FLOAT pU 240;
FI,OATp!J241;
FLOAT PU 242;
FLOAT du;
FLOAT du 23S;
FLOAT zr;
FLOAT ta;
FLOAT Si;
FLOAT mo;
FLOAT ru;
FLOAT rh;
FLOAT pd;
FLOAT other;

};
)*STRIJCTIJREFOR INVENTORY TYPE RECORDS ‘/
struct !nventform {

CHAR type;
LONG serial no;
LONG COI no;
LONG SUPCOI no;
USHORT CO1 count;
USHORT batch SW;
USHORT slug no;
USHORT position;
USHORT yaar;
CHIR batch no[RGSZbatch no];
CHAR jacket no[RGSZJacket no];
CHAR prod desc[RGSZprod descl;
CHAR spm no[RGSZspm no];
CHAR tran no[RGSZtran no];
LHAR status;
CHAR xn tag[RGSZxn tag];
CHAR room[RGSZrooml;
CHAR zone[RGSZzonel;
CHAR contalner[RGSZcontalnerl;
CHAR r?mdrks[RGSZremarksl;
CHAR mescod;
CHAR collectlon[RGSZcollectlonl;
FLOAT length;
FLOAT avg dlam;
FLOAT mln dlam;
FLOAT max dlam;
FLOAT dqnslty;

);

Fig. 1.
Part of the include fila that declare~
the luventory otructure.

h“# include “rgstrc

VOID increment(or
struct anmuntform
struct amountform
{

origp->netamt
orlgp->alloy
origp->uran
orlgp->u 234
origp-}u 235
origp->u 23o
origp->u 238
orlgp->du
origp->du 235
orlgp->pu
origp->pu 239
origp-)pu 240
origp-~pu 241
oriqp->pu 242
orlgp->pu iso
orlgp-mo
orlgp->pd
or~gp->rh
orlgp->ru

gp, changep)
‘origp;

‘changep;

or

or
or
or

}

+= chdngep->netamt;
+= Changep->alloy;

+= changep->uran;
t= changep-)u 234;
+- changep->u 235;
+= changep->u 236;
+. changep->u 238;
+- changep-)du;
+- changep->du 235;
+= changep->pu;
+. changep->pu 239;
+. changep->pu 240;
t= changep->pu 241;
+. changep->pu 242;
+= changep->pu 1s0;
+. changep-mo;
+= changep->pd;
+= changep->rh;
+= changeD->ru:

gp->si += changep->si;
gp->ta +. changep->ta;
gp->zr +- changep->zr;
gp-)other += changep->other;

Fig. 2.
Th8 original program to iucrmnt the fields
kept at An-u. The routlme is peased two

pohttera-a pointer to em inventory record aod

● Pointer to a tre.mmactiott record. ~ in-

ventory fields that ●re the part holdimg the
amounts ●re incrmnted by the wmt in the
corroapondlog fields in the rm part of the
tramaactloo record. The += s~tax ~~a “’add

the ri~ht hassd ●ide to tha left Mnd ●ide and

store the result in the left hand side.”

These potential problems can be kept under
control by careful uae of debugging devices when
developing modulee. A major aid ia the “lint”
program supplied with ●l! C compilers, A program

that compiles may generate warnings when it passes
through lint. We have usually found that what

appear to be innocuous warnlnga from lint are
ignored at peril.

Even lint will not always catch errant
pointer-, C’s pointer capability dill U11OW you
to write to areaa of code or data that you should
not. Unfortunately, there la no convenient way

to ●schew the use of pointers. We have found
that a debugging tool tieveloped by Whiteh is a

powerful method for ratrhlng such ● rrant pointers.
A side benefit la that, when in operation, it pru-
vldes a convenient tracing methmf. This debugger
1s incorporated in a routine that dynamically
~llocates space, We nwi{ntain two space alloratlun

routines: one that includes the debugger and ona
that does not. we need only rcllnk (a M8tl-1 LJf

less Lhan a minute 011 the PS/2 Model 80) to go
from one to the other. The debugger dosm slow
th~ system down noticeably, but not SLO much that
it will inhibit alpha or beta testing,

1“ htnalt mch one In turn “1
for (k . 0; k (MI; k..))

/* Incrwnt trig orlqlnal n~or oy !Rt WCUII* of Wnq. “~
“(o,.!qf.,) . . “(cmsq.f.,),

}
t

Fig. 3.
A gaoaric program to incrmnt floating pint
fielde h a structure of El@ating fields.
Ibis code sonfea actly the mm purpose as
the code in Fig. 2. Wm. however the ~wer

(ad cqlat.ity) of the Minter make the md-
ule ~emeric. It will work with amy list of
item in che ●tnmture amt. so loug u each
is of typa PMAT. ~reovar, FLMT could be
redefined u DOUBLE, W, ar INT without
c~i08 tti code in tti wbroutima. lha only
requ.ir~ts ●re to cbamge the deflnitiona of
FLOAT amd tbe mtnuture muotform amd to re-
co9pile the ●bbroutlme lmcramnt. The (FLOAT
●) mt~ti~ cuts t~ te~ to its &diate

right into the variable type pointer-to-a-
float. Tlu motatlon * ●fter the variable
~ “add nme to the variabla after the ori~-
toal value ka beam umd.”

Proper attention to the portability-enhancing

fealurea of C MY indeed allow portable programa,
but we hevc much to learn before we aee why it
would be ●uperlor to a carefully deeigned FORTRAN

program. The we of pointers may make standard
generic packages poaaible that could eaae the tagk
of building an ●ccounting package.

l’he C lan,guege ia well worth considering for

building ●n ●ccounting system, particularly a new
one. If the proRram ia properly designed, the

ptogranmer8 need not fear hardware upgrades. A
brief examination of computer journals indicates
a bewildering variety of C support products for
every purpose and operating system.

The C language la not difficult to learn.
FORTRAN or Pascal progranmwrs, partlculisrly the
latter, will find the tranaltion ●aay. The major
learning barrier la the concept of indirect ad-
dressin~ (pointers), particularly becauae ar umnt

paas ing requirea their uas. Good booku~-$ ~,,d

support groups ●re a must, and we have inrlldcd
some suggeatlona.

It has taken ua 6 muntha to get tu whore wv
are now, and we have still much to learn abuut thw

potentials ●nd problems uf C. Plan fur iq lcurnill~
curve if you aaaign FORTRAN ur Paacal prugrinmvlw

to such a task, A ~eamons!d C prugranmwr da p.llt

uf d team would prevent sneny false $tarts.

. REFERENCES

1. R. C. Bear*e, R. J. Thomas, S. P. Henslee,
B. G. Jackson, D. B. Tracy, and D. M. Pace,
“A Materials Accounting System for an IBM PC, ”
Nuc 1. ?Iacer. ?lanage. XV, 373-378 (19S6).

7. . S. .+nch~nyRoybal, Stephen Ortiz, and S. Paul
Henslee, “Demonstration Personnel and Material
Tracking System at ANL-U,” %Uc 1. Rater.

?tanage. XVII, 7S9-793 (1988).

3. The C lJsers Journal 7(1) (1989). (The entire
issue is devoted to portability.)

k. Eric Kh:ce, “Controlling the !4aLloc Heap,” The
C L’sers Journal 7(2), 45 (19S9).

5. B. U. Kernighan and D. H. Ritchie, The C Pro-
Language (Prentice Hall, Englewood

———
gramner

Cliffs, New Jersey, 1988).

6. A. Koenig, C Traps and Pitfalls (Addison-
Wesley Publishing Company, Re~ng, ?lassa-
chusetts, L988).

7. H. Schildt, C: The Complete Reference
(Osborne FlcGraw Hill, Berkeley, California,
1988).

8. R. kiarti, “Debugging C,” Que Corporation,
Carvel, [ndi?.na (1988).

9. The C Users Journal, 2120 U 25th St., Law-
rence, KS 660b6.

